

My Background

- Ecology and Management of Hardwoods, specialty area since 1984.
- Research, Extension & Consulting

OSU Hardwood Silviculture Cooperative

- Since 1988, public and private forestry cooperators.
- Applied research, outreach education, and consulting on red alder stand management.
- Network of 32 long-term installations.
- Growth and yield model for managed stands of red alder.

Future of Alder Management Outline

- Hardwood resource legacy from past practices and current trends.
- Hardwood management and harvesting behavior of private and public landowners.
- Key Issues & Priorities for future efforts to sustain hardwood resources.
- Tools to help landowners and foresters manage the hardwood resource.

Annual Timber Harvest - W. Washington

Sources: WA DNR Timber Harvest Reports, WHC Tons of Logs Processed conversion to Bd.Ft. assumed 8.1 tons/mbf & WHC report = 90% of actual WA alder logs

2013 Western Washington Hardwood Assessment for WHC

Figure 6. Modeled hardwood harvest volumes by species 2010 - 2030.

Table 6. Modeled hardwood harvest volumes by species 2010 - 2030.

Red Alder Timber Harvest-Removals by Ownership 2010's W. Washington & W. Oregon

Sources: USFS FIA "Data Mart".

Hardwood Inventory and Removals Private lands - W. OR & W. WA

Red Alder Growth and Removals W. Washington 1990's

Red Alder Growth and Removals W. Washington 2010's

Hardwood Proportion of Timber Inventory Non-federal Timberland W. Oregon + W. Washington

Sources: USFS FIA "Data Mart".

Red Alder Growing Stock Inventory W. Oregon & W. Washington

Red Alder Harvest-Removals Percent of Total Growing Stock Removals

Sources: USFS FIA - PNW-RB-237, PNW-RB-246, FIA Data Mart.

Resource Trends and Management Summary

- Inventory and harvest volume of "legacy alder" peaked in late 1980's/early 1990's.
- 1990's alder declined harvesting in excess of annual growth, predominance of management for conifers.
- 2001-2016 inventory of red alder has not declined significantly.
- 2001-2016 harvest volumes of red alder declined to less than half of peak harvest levels; reduced availability of inventory.

Non-industrial private forest owners – diverse goals, changing demographics, decreasing timber management.

Oregon - Top 10 Reasons for Owning Woodlands

Conversion to non-forest use continues - especially in Washington.

Protection of riparian areas and steep slopes with abundant alder ~1/3 of the alder resource in WA.

Most upland alder is in mixed stands, managed primarily for conifer.

Reduced Management and Availability of Alder for Timber

- Protection of riparian areas and steep slopes with abundant alder ~1/3 of the alder resource.
- Conversion to non-forest use, especially in Washington.
- Non-industrial private forest owners diverse goals, changing demographics, decreasing timber management.
- Most upland alder is in mixed stands, managed primarily for conifer.
- Owners who manage timber intensively still favor Douglas-fir and other conifers on uplands

Management of red alder on "working forest" uplands is key to sustaining alder timber production

Alder management on uplands Issues and obstacles

- Alder plantation establishment is expensive seedling costs, high planting density (500-600 tpa) and pre-commercial thinning costs.
- Lack of seedling availability inconsistent supply of high-quality seedlings.
- Landowners' and managers' unfamiliarity with management of red alder.
- Economic analysis shows competitive returns from alder under certain conditions...

Empirical Yield – WA DNR and BC Ministry of Forests. **Managed** – Red Alder: State of Knowledge Symposium 2005, Douglas-fir – Talbert and Marshall 2005.

Example

Comparison Red Alder vs. Douglas-fir

Difference in
Present Net
Value
(Alder – Doug-fir)

Log Price

Site Productivity

	High DF High RA	High DF Med RA	Med DF High RA
High DF High RA	-\$378	-\$1,234	\$248
High DF Med RA	-\$920	-\$1,496	-\$294
Med DF Med RA	-\$312	-\$888	\$131
Med DF High RA	\$230	-\$626	\$673

Assumptions for example comparisons

	red alder	Douglas-fir
Rotation Age (years)	30	45
High Price/mbf	\$700	\$700
Med Price/mbf	\$550	\$550
Low Price/mbf	\$450	\$450
High Prod Site Index SI (ft)	80 (SI 20yr)	150 (SI 50yr)
Med Prod SI (ft)	65 (SI 20yr)	120 (SI 50yr)
MBF/acre High Prod	17.4	43.1
MBF/acre Med Prod	10.7	29.8
Plantation establishment cost/acre	\$505	\$460
Logging cost/mbf	\$150	\$150
Hauling cost/mbf	\$80	\$80
Interest rate for PNV	8%	8%
Planting density	520 tpa	350 tpa
Thinning regime	PCT to 250 tpa age 7	none

Summary – Future of Alder Management

- The future of the red alder resource depends on private forest management.
- Managing alder on "working forest" uplands is key WA DNR plays an important role supporting and demonstrating this.
- Need to increase professional knowledge and skills and demonstrate success improve the alder management toolkit.

For more information on Alder Management

Glenn Ahrens

Hardwood Silviculture Cooperative OSU Extension Forester 200 Warner-Milne Rd. Oregon City, OR 97045 503-655-8631 glenn.ahrens@oregonstate.edu

Andrew Bluhm

Hardwood Silviculture Cooperative College of Forestry, Oregon State University 321 Richardson Hall Corvallis, OR 97331-5752 541-737-6100 andrew.bluhm@oregonstate.edu